Cache Memory Mapping
Techniques

Continue to read pp. 289-305

Cache Memory Mapping

Again cache memory is a small and fast memory
between CPU and main memory

A block of words have to be brought in and out of the
cache memory continuously

Performance of the cache memory mapping function
IS key to the speed

There are a number of mapping technigues
— Direct mapping

— Associative mapping

— Set associative - mapping

Direct Mapping Technique

o Simplest way of mapping
e Main memory is divided in blocks

e Block j of the main memory is mapped onto block j modulo 128
of the cache — consider a cache of 128 blocks of 16 words each

Cache

tag

Block O

tag

Block 1

tag

Tag

Block 127

Block

Word

5

7

A

Main memory address

Consider a memory of 64K
words divided into 4096

blocks
Where blocks 0, 128,

256, ... 3968 should be
mapped to?

Where blocks 126, 254,
382, ... 4094 should be
mapped to?

Direct Mapping Technigue (Continued)

e Mapping process
— Use tag to see if a desired word Is in cache

— It there Is no match, the block containing the required word
must first be read from the memory
— For example: MOVE $A815, DO

10101 0000001 0101
Tay Block# Word

a. Check if cache has tag 10101 for block 1
match -> hit; different -> miss, load the corresponding block
b. Access word 5 of the block

Direct Mapping Technigue (Continued)

e Advantage
— simplest replacement algorithm

» Disadvantage
— not flexible
— there Is contention problem even when cache is not full

» For example, block 0 and block 128 both take only
block O of cache:

— 0 modulo 128=0
— 128 modulo 128 =0

— If both blocks 0 and 128 of the main memory
are used a lot, it will be very slow

Assoclative Mapping Technique

* Any block can go anywhere in cache
e 4095 blocks -> 4095 tag = 2 -> 12 bit tag

Cache Main Memory
tag Block 0 [tag Block 0
[fag_ Block 1 tag Block 1

tag Block 127

Tag Word

12 4
Main memory address

tag Block 4095

Assoclative Mapping Technique
(continued)
e Advantage

— Any empty block in cache can be used, flexible

— Must check all tags to check for a hit, expensive
(parallel algorithm has been developed to speed
up the process)

e \What Is the next technique?

— Something between direct mapping and
associative mapping

Set Assoclative Mapping Technique

Comprise between direct mapping and associative
mapping

Block in main memory maps to a set of blocks in
cache — direct mapping

Can map to any block within the set
E.g. use 6 bits for tag = 2° =64 tags
6 bits for set = 2° = 64 sets

Set Associative Mapping Technique

(continued)
 Memory Address Tag Set Word
6 6 4
Cache

Set0 4 Ltag Block 0 The blocks in cache are divided

g Block 1 into 64 sets and there are two blocks
Set1 | —2d Block 2 in each set

_| tag Block 3

e How the blocks in the main memory
be mapped into cache?

e Main memory blocks 0, 64, 128,
tag | Block 126 4032 maps to set 0 and can occupy
Set63 { tag | Block 127 either of the two positions

Set Associative Mapping Technigue
(continued)

* A set could have one block -> direct mapping; 128 blocks ->

associative mapping

* kblocks per set is referred to as k-way set-associative mapping

Main memory

T
/

Block 0
Tag O
Block 63
Block 64
Tag 1
Block 127
Block 4032
Tag 63

Block 4095

Set 0

Cache Memory Detalls

 Block size

— Depends on how memory is addressed (byte, word, or
long word) and accessed (word at a time)

— 8-16 quite reasonable
e 68040 — 16 bytes per block
e Pentium IV — 64 bytes per block

— Always work with 1 block at a time
— How many blocks in cache?

* No of words in cache divided by number of words
per block — e.g. 2 k words, 16-word block: M =
27 =128 blocks

Cache Memory Details (continued)

* Replacement Algorithms

— Replace the one that has gone the longest time without
being referenced — Least Recently Used (LRU) — block

* How to know which block of main memory is
currently in cache?

— Look at the tag on data in the block

— How long is the tag (how many blocks use same block
of cache)?

o Study a few examples

Examples

o Small Instruction Cache (read 8.6.3)
— Cache has 8 blocks, 1 word each
— Main memory has 256 blocks (words) — 8 bit address
— Execute the following program
— Use direct mapping first Cache

Block 0
Block 0 S

Tag 0 Block 1
g(])_ Loop 5 times Block 1 N
branch — | Block 7

Block 7 Block 8
DO - Tay 1 =
D1 — :
Loop 10 times Block 248
D2 Tag 31
branch ’ ElO Tag Block Block 255
5 3

Main memory address

Direct Mapping Performance

 How many executions? - (2 x 10+4) x5 =120

Cache Block After C1 After Inner Loop After EO
0 CO DO EO
1 Cl D1 D1
2 D2
First time
Misses 2 x5 2 x5 \2+1x4:26
Hits 18 x5 1x4 = 94

e Hit rate = hits/total = 94/120 = 78.3%

Assoclative Mapping Performance

Tag
8- Main memory address

Cache Block After C1 After Inner Loop After EO

0 CO CO CO

1 Cl Cl Cl

2 DO DO

3 D1 D1

4 D2

5 EO

6

7
Misses 2 2 2 =6
Hits next 4 times all hits = 114

e Hit rate = hits/total = 114/120 = 95%

Set Assoclative Performance

Tag Set
2 —\Wway -> 4 sets 6 ‘ 2 | Main memory address
Second time
Cache Block After C1 After Inner Loop After EO| AfterC1 After Loop
Set 0 - 0 CO CO EO EO DO
Pl DO DO | CO €O
-0 Cl Cl Cl C1l C1l
Set 1
L1 D1 D1 D1 D1
Set 2 [0 D2 D2 D2
S
Set 3 | 0
S
Misses 2+ 1x4 2 +1x4 2+1x4 =18
Hits The rest is all hits = 102

e Hit rate = hits/total = 102/120 = 85%

